336 research outputs found

    On Profit-Maximizing Pricing for the Highway and Tollbooth Problems

    Get PDF
    In the \emph{tollbooth problem}, we are given a tree \bT=(V,E) with nn edges, and a set of mm customers, each of whom is interested in purchasing a path on the tree. Each customer has a fixed budget, and the objective is to price the edges of \bT such that the total revenue made by selling the paths to the customers that can afford them is maximized. An important special case of this problem, known as the \emph{highway problem}, is when \bT is restricted to be a line. For the tollbooth problem, we present a randomized O(logn)O(\log n)-approximation, improving on the current best O(logm)O(\log m)-approximation. We also study a special case of the tollbooth problem, when all the paths that customers are interested in purchasing go towards a fixed root of \bT. In this case, we present an algorithm that returns a (1ϵ)(1-\epsilon)-approximation, for any ϵ>0\epsilon > 0, and runs in quasi-polynomial time. On the other hand, we rule out the existence of an FPTAS by showing that even for the line case, the problem is strongly NP-hard. Finally, we show that in the \emph{coupon model}, when we allow some items to be priced below zero to improve the overall profit, the problem becomes even APX-hard

    The Power of Localization for Efficiently Learning Linear Separators with Noise

    Full text link
    We introduce a new approach for designing computationally efficient learning algorithms that are tolerant to noise, and demonstrate its effectiveness by designing algorithms with improved noise tolerance guarantees for learning linear separators. We consider both the malicious noise model and the adversarial label noise model. For malicious noise, where the adversary can corrupt both the label and the features, we provide a polynomial-time algorithm for learning linear separators in d\Re^d under isotropic log-concave distributions that can tolerate a nearly information-theoretically optimal noise rate of η=Ω(ϵ)\eta = \Omega(\epsilon). For the adversarial label noise model, where the distribution over the feature vectors is unchanged, and the overall probability of a noisy label is constrained to be at most η\eta, we also give a polynomial-time algorithm for learning linear separators in d\Re^d under isotropic log-concave distributions that can handle a noise rate of η=Ω(ϵ)\eta = \Omega\left(\epsilon\right). We show that, in the active learning model, our algorithms achieve a label complexity whose dependence on the error parameter ϵ\epsilon is polylogarithmic. This provides the first polynomial-time active learning algorithm for learning linear separators in the presence of malicious noise or adversarial label noise.Comment: Contains improved label complexity analysis communicated to us by Steve Hannek

    Randomized Composable Core-sets for Distributed Submodular Maximization

    Full text link
    An effective technique for solving optimization problems over massive data sets is to partition the data into smaller pieces, solve the problem on each piece and compute a representative solution from it, and finally obtain a solution inside the union of the representative solutions for all pieces. This technique can be captured via the concept of {\em composable core-sets}, and has been recently applied to solve diversity maximization problems as well as several clustering problems. However, for coverage and submodular maximization problems, impossibility bounds are known for this technique \cite{IMMM14}. In this paper, we focus on efficient construction of a randomized variant of composable core-sets where the above idea is applied on a {\em random clustering} of the data. We employ this technique for the coverage, monotone and non-monotone submodular maximization problems. Our results significantly improve upon the hardness results for non-randomized core-sets, and imply improved results for submodular maximization in a distributed and streaming settings. In summary, we show that a simple greedy algorithm results in a 1/31/3-approximate randomized composable core-set for submodular maximization under a cardinality constraint. This is in contrast to a known O(logkk)O({\log k\over \sqrt{k}}) impossibility result for (non-randomized) composable core-set. Our result also extends to non-monotone submodular functions, and leads to the first 2-round MapReduce-based constant-factor approximation algorithm with O(n)O(n) total communication complexity for either monotone or non-monotone functions. Finally, using an improved analysis technique and a new algorithm PseudoGreedy\mathsf{PseudoGreedy}, we present an improved 0.5450.545-approximation algorithm for monotone submodular maximization, which is in turn the first MapReduce-based algorithm beating factor 1/21/2 in a constant number of rounds

    Robustness of Transcriptional Regulation in Yeast-like Model Boolean Networks

    Get PDF
    We investigate the dynamical properties of the transcriptional regulation of gene expression in the yeast Saccharomyces Cerevisiae within the framework of a synchronously and deterministically updated Boolean network model. By means of a dynamically determinant subnetwork, we explore the robustness of transcriptional regulation as a function of the type of Boolean functions used in the model that mimic the influence of regulating agents on the transcription level of a gene. We compare the results obtained for the actual yeast network with those from two different model networks, one with similar in-degree distribution as the yeast and random otherwise, and another due to Balcan et al., where the global topology of the yeast network is reproduced faithfully. We, surprisingly, find that the first set of model networks better reproduce the results found with the actual yeast network, even though the Balcan et al. model networks are structurally more similar to that of yeast.Comment: 7 pages, 4 figures, To appear in Int. J. Bifurcation and Chaos, typos were corrected and 2 references were adde

    Video Pandemics: Worldwide Viral Spreading of Psy's Gangnam Style Video

    Full text link
    Viral videos can reach global penetration traveling through international channels of communication similarly to real diseases starting from a well-localized source. In past centuries, disease fronts propagated in a concentric spatial fashion from the the source of the outbreak via the short range human contact network. The emergence of long-distance air-travel changed these ancient patterns. However, recently, Brockmann and Helbing have shown that concentric propagation waves can be reinstated if propagation time and distance is measured in the flight-time and travel volume weighted underlying air-travel network. Here, we adopt this method for the analysis of viral meme propagation in Twitter messages, and define a similar weighted network distance in the communication network connecting countries and states of the World. We recover a wave-like behavior on average and assess the randomizing effect of non-locality of spreading. We show that similar result can be recovered from Google Trends data as well.Comment: 10 page

    Learning with a Drifting Target Concept

    Full text link
    We study the problem of learning in the presence of a drifting target concept. Specifically, we provide bounds on the error rate at a given time, given a learner with access to a history of independent samples labeled according to a target concept that can change on each round. One of our main contributions is a refinement of the best previous results for polynomial-time algorithms for the space of linear separators under a uniform distribution. We also provide general results for an algorithm capable of adapting to a variable rate of drift of the target concept. Some of the results also describe an active learning variant of this setting, and provide bounds on the number of queries for the labels of points in the sequence sufficient to obtain the stated bounds on the error rates

    Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks

    No full text
    A typical viral marketing model identifies influential users in a social network to maximize a single product adoption assuming unlimited user attention, campaign budgets, and time. In reality, multiple products need campaigns, users have limited attention, convincing users incurs costs, and advertisers have limited budgets and expect the adoptions to be maximized soon. Facing these user, monetary, and timing constraints, we formulate the problem as a submodular maximization task in a continuous-time diffusion model under the intersection of a matroid and multiple knapsack constraints. We propose a randomized algorithm estimating the user influence in a network (V|\mathcal{V}| nodes, E|\mathcal{E}| edges) to an accuracy of ϵ\epsilon with n=O(1/ϵ2)n=\mathcal{O}(1/\epsilon^2) randomizations and O~(nE+nV)\tilde{\mathcal{O}}(n|\mathcal{E}|+n|\mathcal{V}|) computations. By exploiting the influence estimation algorithm as a subroutine, we develop an adaptive threshold greedy algorithm achieving an approximation factor ka/(2+2k)k_a/(2+2 k) of the optimal when kak_a out of the kk knapsack constraints are active. Extensive experiments on networks of millions of nodes demonstrate that the proposed algorithms achieve the state-of-the-art in terms of effectiveness and scalability

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011

    Dynamical real-space renormalization group calculations with a new clustering scheme on random networks

    Full text link
    We have defined a new type of clustering scheme preserving the connectivity of the nodes in network ignored by the conventional Migdal-Kadanoff bond moving process. Our new clustering scheme performs much better for correlation length and dynamical critical exponents in high dimensions, where the conventional Migdal-Kadanoff bond moving scheme breaks down. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising Model to be z=2.13 and z=2.09, respectively at pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behaviour for randomly bond diluted lattices in d=2 and 3, in the light of this new transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law degree distributions, both in the pure and random cases.Comment: 8 figure

    Elementary processes governing the evolution of road networks

    Get PDF
    Urbanisation is a fundamental phenomenon whose quantitative characterisation is still inadequate. We report here the empirical analysis of a unique data set regarding almost 200 years of evolution of the road network in a large area located north of Milan (Italy). We find that urbanisation is characterised by the homogenisation of cell shapes, and by the stability throughout time of high-centrality roads which constitute the backbone of the urban structure, confirming the importance of historical paths. We show quantitatively that the growth of the network is governed by two elementary processes: (i) `densification', corresponding to an increase in the local density of roads around existing urban centres and (ii) `exploration', whereby new roads trigger the spatial evolution of the urbanisation front. The empirical identification of such simple elementary mechanisms suggests the existence of general, simple properties of urbanisation and opens new directions for its modelling and quantitative description.Comment: 10 pages, 6 figure
    corecore